

JAVA PROGRAMMING LAB

M.Sc (COMPUTER SCIENCE)
SEMESTER-I, PAPER-VII

 Lesson Writer:

Dr. U. Surya Kameswari

Asst. Professor
Dept. of CS&E

Acharya Nagarjuna University
Nagarjunanagar – 522 510

 Editor

Dr. Kampa Lavanya
Asst. Professor
Dept. of CS&E

Acharya Nagarjuna University
Nagarjunanagar – 522 510

Director, I/c.

Prof. V. Venkateswarlu
 M.A., M.P.S., M.S.W ., M.Phil., Ph.D.

Professor
Centre for Distance Education
Acharya Nagarjuna University

Nagarjuna Nagar 522 510

Ph: 0863-2346222, 2346208
 0863- 2346259 (Study Material)

Website www.anucde.info
E-mail: anucdedirector@gmail.com

M.Sc Computer Science

First Edition : 2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc (Computer
Science), Centre for Distance Education, Acharya Nagarjuna University and this book
is meant for limited circulation only.

Published by:

 Director I/c

Prof. V. Venkateswarlu,
 M.A., M.P.S., M.S.W . M.Phil., Ph.D.
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been

forging ahead in the path of progress and dynamism, offering a variety of
courses and research contributions. I am extremely happy that by gaining 'A+'
grade from the NAAC in the year 2024, Acharya Nagarjuna University is
offering educational opportunities at the UG, PG levels apart from research
degrees to students from over 221 affiliated colleges spread over the two districts
of Guntur and Prakasam.

The University has also started the Centre for Distance Education in
2003-04 with the aim of taking higher education to the door step of all the
sectors of the society. The centre will be a great help to those who cannot join in
colleges, those who cannot afford the exorbitant fees as regular students, and
even to housewives desirous of pursuing higher studies. Acharya Nagarjuna
University has started offering B.Sc., B.A., B.B.A., and B.Com courses at the
Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG
level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the
distance mode, these self-instruction materials have been prepared by eminent
and experienced teachers. The lessons have been drafted with great care and
expertise in the stipulated time by these teachers. Constructive ideas and
scholarly suggestions are welcome from students and teachers involved
respectively. Such ideas will be incorporated for the greater efficacy of this
distance mode of education. For clarification of doubts and feedback, weekly
classes and contact classes will be arranged at the UG and PG levels
respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country's progress. It is my fond desire that
in the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people.
My congratulations to all the Directors, Academic Coordinators, Editors and
Lesson-writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,
Vice-Chancellor I/c

 Acharya Nagarjuna University

M.Sc. Computer Science
Semester-I, Paper-VI

DATA STRUCTURES USING C LAB

Lab Cycle
1. Write a Java Program to define a class, describe its constructor, overload the constructors

and instantiate its object.

2. Write a Java Program to define a class, define instance methods for setting and retrieving

values of instance variables and instantiate its object

3. Write a java program to practice using String class and its methods

4. Write a java program to implement inheritance and demonstrate use of method overriding

5. Write a java program to implement multilevel inheritance by applying various access

controls to its data members and methods.

6. Write a program to demonstrate use of implementing interfaces

7. Design a Java interface for ADT Stack. Develop two different classes that implement this

interface, one using array and the other using linked-list. Provide necessary exception

handling in both the implementations.

8. Write a Java program to implement the concept of importing classes from user defined

package and creating packages

9. Write a program to implement the concept of threading by implementing Runnable Interface

10. write a java program to store and read objects from a file

11. Write a Java program that displays the number of characters, lines and words in a text file.

12. write a java program to illustrate object serialization

13. Create a java program to illustrate user defined exception

14. Write a java program to create a thread using runnable interface

15. Write a Java program that creates three threads. First thread displays "Good Morning"

every one second, the second thread displays "Hello" every two seconds and the third thread

displays "Welcome" every three seconds

16. Write an applet To create multiple threads that correctly implements producer consumer

problem using the concept of Inter thread communication

17. Write an applet To handling the mouse events

18. Write a Program That works as a simple calculator using Grid layout to arrange buttons

for the digits and +,-,* % operations. Add a text field to print the result.

19. Build and run "Celsius Converter" sample application using swings

20. Develop an applet that receives an integer in one text field, and computes its factorial

Value and returns it in another text field, when the button named "Compute" is clicked

JAVA PROGRAMMING LAB

OBJECTIVES:

The objective of this lab is to master the JAVA PROGRMMING concepts and to learn how to work with
real time applications using JAVA PROGRAMMING. These programs are widely used in most real-time
scenarios. After the end of lab, students will be able know the complete practical exposure on JAVA
PROGRAMMING.

STRUCTURE

1. Write a Java Program to define a class, describe its constructor, overload the

constructors and instantiate its object.

2. Write a Java Program to define a class, define instance methods for setting and

retrieving values of instance variables and instantiate its object

3. Write a java program to practice using String class and its methods

4. Write a java program to implement inheritance and demonstrate use of method

overriding

5. Write a java program to implement multilevel inheritance by applying various access

controls to its data members and methods.

6. Write a program to demonstrate use of implementing interfaces

7. Design a Java interface for ADT Stack. Develop two different

classes that implement this interface, one using array and the other using linked-list.

Provide necessary exception handling in both the implementations.

8. Write a Java program to implement the concept of importing classes from user

defined package and creating packages

9. Write a program to implement the concept of threading by implementing Runnable

Interface

10. write a java program to store and read objects from a file

11. Write a Java program that displays the number of characters, lines and words in a text

file.

12. write a java program to illustrate object serialization

13. Create a java program to illustrate user defined exception

14. Write a java program to create a thread using runnable interface

15. Write a Java program that creates three threads. First thread displays “Good Morning”

every one second, the second thread displays “Hello” every two seconds and the third

thread displays “Welcome” every three seconds

Centre for Distance Education 2 Acharya Nagarjuna University

16. Write an applet To create multiple threads that correctly implements producer

consumer problem using the concept of Inter thread communication

17. Write an applet To handling the mouse events

18. Write a Program That works as a simple calculator using Grid layout to arrange

buttons for the digits and +,-,* % operations. Add a text field to print the result.

19. Build and run "CelsiusConverter" sample application using swings

20. Develop an applet that receives an integer in one text field, and computes its factorial

Value and returns it in another text field, when the button named “Compute” is

clicked

LAB EXERCISE 1:

Write a Java Program to define a class, describe its constructor, overload
the constructors and instantiate its object.

PROGRAM DESCRIPTION

This program demonstrates the concept of class definition, constructor usage, and constructor
overloading in Java. It defines a class First with attributes a, b, and c, provides multiple
constructors to initialize these attributes in different ways: a default constructor, a constructor
with two parameters, and a constructor with three parameters. The program highlights the
flexibility of constructor overloading by instantiating objects of the First class with varying
levels of detail, showcasing how object initialization can be tailored to specific requirements.
,,

SOURCE CODE:

import java.lang.*;
import java.io.*;

class First // define a class
{

int a,b,c;

First() // default constructor
{
 a=0;
 b=0;
 c=0;
 System.out.println("In the default constructor");

System.out.println("a = " + a + " \t " + " b = " + b + "\t" + " c = " + c);
}

First(int a,int b) // parameterized constructor
{

this.a=a;

Computer Science 3 Java Programming Lab

this.b=b;
System.out.println("\nIn the Parameterized constructor with 2 paramters");
System.out.println("\n a = " + a + "\t" + " b = " + b);

}

First(int a, int b, int c) // parameterized constructor overloaded
{

this.a=a;
this.b=b;
this.c=c;
System.out.println("\nIn the Parameterized constructor with 3 paramters");
System.out.println("a = " + a + " \t " + " b = " + b + "\t" + " c = " + c);

}
}

class Constructor
{

public static void main(String args[])
{

First f1 = new First();
First f2 = new First(10,20);
First f3 = new First(100,200,300);

}
}

OUTPUT:

Centre for Distance Education 4 Acharya Nagarjuna University

LAB EXERCISE 2:

Write a Java Program to define a class, define instance methods for setting
and retrieving values of instance variables and instantiate its object

PROGRAM DESCRIPTION

This program illustrates how to define a class in Java with instance variables and
corresponding instance methods for setting and retrieving their values. The class, designed to
encapsulate data, contains private fields to ensure encapsulation and provides public setter
and getter methods to modify and access these fields. The program demonstrates object
instantiation by creating an object of the class and using the setter methods to assign values to
the instance variables, followed by the getter methods to retrieve and display these values.
This approach emphasizes the principles of encapsulation and data hiding in object-oriented
programming.

SOURCE CODE:

import java.lang.*;
import java.io.*;

class Employee // Define the class
{

private String ename;
private int deptno; // Instance variables

// Method to set the ename
public void setename(String ename)
{
this.ename = ename;
}

// Method to get the ename
public String getename()
{
return this.ename;
}

// Method to set the deptno
public void setdeptno(int deptno)
{

if (deptno >= 0) // Validate deptno to be non-negative
this.deptno = deptno;

else
System.out.println("deptno cannot be negative!");

}

Computer Science 5 Java Programming Lab

// Method to get the deptno
public int getdeptno()
{

return this.deptno;
}

}

class Emp
{

public static void main(String[] args)
{

// Instantiate an object of the Employee class
Employee Employee = new Employee();

// Set values using setter methods
Employee.setename("Srinivas");
Employee.setdeptno(20);

// Retrieve and display values using getter methods
System.out.println("\n Employee Name: " + Employee.getename());
System.out.println("\n Department Number: " + Employee.getdeptno());
}

}

OUTPUT:

LAB EXERCISE 3:

Write a java program to practice using String class and its methods

Centre for Distance Education 6 Acharya Nagarjuna University

PROGRAM DESCRIPTION

This Java program demonstrates the versatility of the String class by showcasing various
commonly used methods on the string "acharya nagarjuna university". It includes operations
such as finding the length of the string, converting to uppercase and lowercase, finding the
index of specific characters, checking prefixes and suffixes, extracting substrings, replacing
words, splitting the string into an array, checking for the presence of substrings, and trimming
leading and trailing spaces. The program also compares strings for equality both case-
sensitively and case-insensitively. These examples highlight the power of the String class in
handling and manipulating textual data in Java, making it an essential part of working with
strings effectively.

SOURCE CODE:

import java.lang.*;
import java.io.*;

class StringMethodsExample
{
 public static void main(String[] args)
 {
 // String element
 String str = "acharya nagarjuna university";

 // Display original string
 System.out.println("\n Original String: " + str);

 // Length of the string
 System.out.println("\n Length of String: " + str.length());

 // Convert to uppercase
 System.out.println("\n Uppercase: " + str.toUpperCase());

 // Convert to lowercase
 System.out.println("\n Lowercase: " + str.toLowerCase());

 // Find the index of a specific character
 System.out.println("\n Index of 'n': " + str.indexOf('n'));

 // Check if the string starts with a specific prefix
 System.out.println("\n Starts with 'acharya': " + str.startsWith("acharya"));

 // Check if the string ends with a specific suffix
 System.out.println("\n Ends with 'university': " + str.endsWith("university"));

 // Extract a substring
 System.out.println("\n Substring (8 to 16): " + str.substring(8, 16));

Computer Science 7 Java Programming Lab

 // Replace a word in the string
 System.out.println("\n Replace 'university' with 'college': " + str.replace("university",
"college"));

 // Split the string into words
 String[] words = str.split(" ");
 System.out.println("\n Words in the String:");
 for (String word : words) {
 System.out.println(word);
 }

 // Check if the string contains a specific sequence
 System.out.println("\n Contains 'nagarjuna': " + str.contains("nagarjuna"));

 // Remove leading and trailing spaces (if any)
 String strWithSpaces = " acharya nagarjuna university ";
 System.out.println("\n Trimmed String: '" + strWithSpaces.trim() + "'");
 // Compare strings
 String str2 = "Acharya Nagarjuna University";
 System.out.println("\n Equals to 'Acharya Nagarjuna University' (case-sensitive): " +
str.equals(str2));
 System.out.println("\n Equals to 'Acharya Nagarjuna University' (ignore case): " +
str.equalsIgnoreCase(str2));
 }
}
OUTPUT:

LAB EXERCISE 4:

Write a java program to implement inheritance and demonstrate use of
method overriding

Centre for Distance Education 8 Acharya Nagarjuna University

PROGRAM DESCRIPTION:

This program demonstrates the concept of inheritance and method overriding in Java. The
Animal class serves as the parent class with a generic sound() method, while the Dog and Cat
classes inherit from Animal and override the sound() method to provide specific
implementations ("Dog barks" and "Cat meows"). The main method creates objects of these
classes to show how the overridden methods are called. Additionally, it illustrates
polymorphism by using a reference of the parent class (Animal) to call the overridden
methods of the child classes (Dog and Cat). This program highlights key object-oriented
principles like inheritance, overriding, and polymorphism.

SOURCE CODE:

// Parent class
class Animal
{
 // Method to describe the sound of the animal
 public void sound()
 {
 System.out.println("Animals make different sounds.");
 }
}

// Child class
class Dog extends Animal {
 // Overriding the sound method in the parent class
 @Override
 public void sound() {
 System.out.println("Dog barks.");
 }
}

// Another child class
class Cat extends Animal {
 // Overriding the sound method in the parent class
 @Override
 public void sound() {
 System.out.println("Cat meows.");
 }
}

// Main class
class InheritanceExample
{
 public static void main(String[] args)
 {

Computer Science 9 Java Programming Lab

 // Create an Animal object
 Animal animal = new Animal();
 animal.sound(); // Calls the sound method of Animal

 // Create a Dog object
 Dog dog = new Dog();
 dog.sound(); // Calls the overridden sound method of Dog

 // Create a Cat object
 Cat cat = new Cat();
 cat.sound(); // Calls the overridden sound method of Cat

 // demonstrating polymorphism
 Animal myAnimal;

 myAnimal = dog;
 myAnimal.sound(); // Calls Dog's sound method

 myAnimal = cat;
 myAnimal.sound(); // Calls Cat's sound method
 }
}
OUTPUT:

LAB EXERCISE 5:
Write a java program to implement multilevel inheritance by applying various access
controls to its data members and methods.Write a java program to implement
inheritance and demonstrate use of method overriding

PROGRAM DESCRIPTION:

Centre for Distance Education 10 Acharya Nagarjuna University

This Java program demonstrates multilevel inheritance and the use of various access control
modifiers (public, protected, private, and default) in a class hierarchy. The program consists
of three classes: Vehicle, Car (which inherits from Vehicle), and SportsCar (which inherits
from Car). The Vehicle class contains data members and methods with different access
levels, such as public for general accessibility, protected for subclass access, private for
internal use only, and default for package-level access. The Car and SportsCar classes
override and use these inherited methods to display details of the vehicle, car, and sports car,
demonstrating how access control affects visibility and method invocation in multilevel
inheritance.

SOURCE CODE:

// Base class
class Vehicle
{
 public String brand; // Public data member: Accessible from anywhere
 protected int maxSpeed; // Protected data member: Accessible within the same package and
subclasses

 private String engineType; // Pivate data member: Accessible only within this class
 String fuelType; // Default (package-private) data member: Accessible within the same
package

 // Public method: Accessible from anywhere
 public void displayBrand()
 {
 System.out.println("Vehicle Brand: " + brand);
 }

 // Protected method: Accessible within the same package and subclasses
 protected void displayMaxSpeed()
 {
 System.out.println("Max Speed: " + maxSpeed + " km/h");
 }

 // Private method: Accessible only within this class
 private void displayEngineType() {
 System.out.println("Engine Type: " + engineType);
 }

 // Default (package-private) method: Accessible within the same package
 void displayFuelType() {
 System.out.println("Fuel Type: " + fuelType);
 }
 // Constructor
 public Vehicle(String brand, int maxSpeed, String engineType, String fuelType) {
 this.brand = brand;

Computer Science 11 Java Programming Lab

 this.maxSpeed = maxSpeed;
 this.engineType = engineType;
 this.fuelType = fuelType;
 }
}

// Derived class
class Car extends Vehicle {
 // Constructor
 public Car(String brand, int maxSpeed, String engineType, String fuelType) {
 super(brand, maxSpeed, engineType, fuelType); // Call the superclass constructor
 }

 // Overriding method to display car-specific details
 public void displayCarDetails() {
 displayBrand(); // Public method from the base class
 displayMaxSpeed(); // Protected method from the base class
 // displayEngineType(); // Error: Cannot access private method from base class
 displayFuelType(); // Default method from the base class
 }
}

// Further derived class
class SportsCar extends Car {
 // Constructor
 public SportsCar(String brand, int maxSpeed, String engineType, String fuelType) {
 super(brand, maxSpeed, engineType, fuelType); // Call the superclass constructor
 }

 // Method to display sports car-specific details
 public void displaySportsCarDetails() {
 displayBrand(); // Public method from the base class
 displayMaxSpeed(); // Protected method from the base class
 // displayEngineType(); // Error: Cannot access private method from base class
 displayFuelType(); // Default method from the base class
 }
}

// Main class
class MultilevelInheritance
{
 public static void main(String[] args)
 {
 // Create an object of SportsCar (which inherits from Car and Vehicle)
 SportsCar sportsCar = new SportsCar("Ferrari", 350, "V8", "Petrol");

Centre for Distance Education 12 Acharya Nagarjuna University

 // Call the method from SportsCar to display details
 sportsCar.displaySportsCarDetails();
 }
}

OUTPUT:

 LAB EXERCISE 6:

Write a program to demonstrate use of implementing interfaces

PROGRAM DESCRIPTION:

This Java program demonstrates the use of interfaces by modeling student information
through an interface called Student. The interface defines methods for displaying and
updating student details, along with a default method for calculating tuition fees. Two classes,
Undergraduate and Postgraduate, implement this interface, providing their own specific
implementations for the displayDetails(), updateDetails(), and calculateTuitionFee() methods.
The program creates objects for both classes, updates their details, and calls the implemented
methods to display the information and calculate the respective tuition fees. The use of
interfaces in this program illustrates how common behaviors can be defined and shared
across different classes while allowing for flexibility in implementation.

SOURCE CODE:

// Define the interface
interface Student
{
 // Abstract method to display student details
 void displayDetails();

 // Abstract method to update student details
 void updateDetails(String name, int age, String course);

Computer Science 13 Java Programming Lab

 // Default method to calculate tuition fee (can be overridden by implementing classes)
 default void calculateTuitionFee()
 {
 System.out.println("Calculating general tuition fee...");
 }
}

// Undergraduate class implementing the Student interface
class Undergraduate implements Student
{
 private String name;
 private int age;
 private String course;

 // Constructor
 public Undergraduate(String name, int age, String course)
 {
 this.name = name;
 this.age = age;
 this.course = course;
 }

 // Implementing displayDetails method
 @Override
 public void displayDetails()
 {
 System.out.println("Undergraduate Student: ");
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 System.out.println("Course: " + course);
 }

 // Implementing updateDetails method
 @Override
 public void updateDetails(String name, int age, String course)
 {
 this.name = name;
 this.age = age;
 this.course = course;
 }

 // Overriding the calculateTuitionFee method
 @Override
 public void calculateTuitionFee() {
 System.out.println("Calculating undergraduate tuition fee...");

Centre for Distance Education 14 Acharya Nagarjuna University

 }
}

// Postgraduate class implementing the Student interface
class Postgraduate implements Student {
 private String name;
 private int age;
 private String course;

 // Constructor
 public Postgraduate(String name, int age, String course) {
 this.name = name;
 this.age = age;
 this.course = course;
 }

 // Implementing displayDetails method
 @Override
 public void displayDetails() {
 System.out.println("Postgraduate Student: ");
 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 System.out.println("Course: " + course);
 }

 // Implementing updateDetails method
 @Override
 public void updateDetails(String name, int age, String course)
 {
 this.name = name;
 this.age = age;
 this.course = course;
 }

 // Overriding the calculateTuitionFee method
 @Override
 public void calculateTuitionFee()
 {
 System.out.println("Calculating postgraduate tuition fee...");
 }
}

// Main class to test the implementation
class StudentInformation
{

Computer Science 15 Java Programming Lab

 public static void main(String[] args)
{
 // Create Undergraduate and Postgraduate student objects
 Student undergrad = new Undergraduate("Shourya", 20, "Computer Science");
 Student postgrad = new Postgraduate("Arya", 25, "Data Science");

 // Display student details
 undergrad.displayDetails();
 postgrad.displayDetails();

 // Update student details
 undergrad.updateDetails("Shourya", 21, "Software Engineering");
 postgrad.updateDetails("Arya", 26, "AI and Machine Learning");

 // Display updated details
 System.out.println("\nUpdated Student Information:");
 undergrad.displayDetails();
 postgrad.displayDetails();

 // Calculate tuition fees
 undergrad.calculateTuitionFee();
 postgrad.calculateTuitionFee();
 }
}

OUTPUT:

Centre for Distance Education 16 Acharya Nagarjuna University

LAB EXERCISE 7:

Design a Java interface for ADT Stack. Develop two different classes that
implement this interface, one using array and the other using linked-list.
Provide necessary exception handling in both the implementations

PROGRAM DESCRIPTION:

This Java program demonstrates the implementation of stack operations using both an array-
based stack (Astack) and a linked list-based stack (liststack). The stackoperation interface
defines two methods: push(int i) and pop(), which are implemented by both stack classes. The
Astack class uses an array to store stack elements, handling overflow and underflow
conditions, while the liststack class uses a linked list, with a node class to represent individual
elements. The program allows the user to interactively choose between the array-based or
linked list-based stack and perform operations like pushing, popping, and displaying
elements. The main method provides a menu-driven interface to select the stack type and
operations, demonstrating how different data structures can be used to implement the same
stack functionality
SOURCE CODE:

import java.io.*;

interface stackoperation
{

public void push(int i);
public void pop();

}

class Astack implements stackoperation
{

int stack[];
int top;
Astack()
{

stack=new int[10]; top=0;
}

public void push(int item)
{

if (stack[top]==10)
System.out.println("overflow");

else
{

stack[++top]=item;
System.out.println("item pushed");

}
}

Computer Science 17 Java Programming Lab

public void pop()
{

if (stack[top]<=0)
System.out.println("underflow");

else
{

stack[top]=top--;
System.out.println("item popped");

}
}

public void display()
{

for(int i=1;i<=top;i++)
System.out.println("element:"+stack[i]);

}
}
class liststack implements stackoperation
{

node top,q;
int count;

public void push(int i)
{

node n=new node(i);
n.link=top;
top=n;
count++;

}

public void pop()
{

if(top==null)
System.out.println("under flow");

else
{

int p=top.data;
top=top.link;
count--;
System.out.println("popped element:"+p);

}
}

void display()

Centre for Distance Education 18 Acharya Nagarjuna University

{

for(q=top;q!=null;q=q.link)
{

System.out.println("the elements are:"+q.data);
}

}

class node
{

int data;
node link;

node(int i)
{

data=i;
link=null;

}
}

}

class sample
{

public static void main(String args[]) throws IOException
{

int ch, x=1,p=0,t=0;
DataInputStream in=new DataInputStream(System.in); do
{
try
{

System.out.println("------------------------------");
System.out.println("1.Arraystack 2.liststack 3.exit");
System.out.println("------------------------------");
System.out.println("enter ur choice:");
int c=Integer.parseInt(in.readLine());
Astack s=new Astack();
switch(c)
{

case 1:
do
{

if(p==1)
break;

System.out.println("ARRAY STACK");

Computer Science 19 Java Programming Lab

System.out.println("1.push 2.pop 3.display 4.exit");
System.out.println("enter ur choice:");
ch=Integer.parseInt(in.readLine());

switch(ch)
{
case 1:

System.out.println("enter the value to push:");
int i=Integer.parseInt(in.readLine());
s.push(i);
break;

case 2:
s.pop();
break;

case 3:
System.out.println("the elements are:");
s.display();
break;

case 4:
p=1;
continue;

}
} while(x!=0);
break;

case 2:
liststack l=new liststack();
do
{

if(t==1)
break;

System.out.println("LIST STACK:");
System.out.println("1.push 2.pop 3.display 4.exit");
System.out.println("enter your choice:");
ch=Integer.parseInt(in.readLine());
switch(ch)
{
case 1:

System.out.println("enter the value for push:");
int a=Integer.parseInt(in.readLine());
l.push(a);
break;

case 2:
l.pop();
break;

case 3:

Centre for Distance Education 20 Acharya Nagarjuna University

l.display();
 break;

case 4:
t=1;
continue;

}
}
while(x!=0);
break;

case 3:
System.exit(0);

}
}
catch(IOException e)
{

System.out.println("io error");
}

} while(x!=0);
}
}

OUTPUT:

Computer Science 21 Java Programming Lab

LAB EXERCISE 8:

Write a Java program to implement the concept of importing classes from
user defined package and creating packages

PROGRAM DESCRIPTION:

The provided Java code defines a simple banking system with two classes: Bank and
Account. The Bank class contains two attributes: name (a String) and balance (a double),
which are initialized via its constructor. The show() method in the Bank class prints the
account holder's name and balance to the console. The Account class contains the main
method, where an instance of the Bank class is created with the name "ram" and a balance of
5678.23. The show() method is then called to display this information.

SOURCE CODE:

package bank1;

class Bank
{

String name; double balance;
Bank(String n,double bal)
{

name=n;
balance=bal;

}

void show()
{

System.out.println(name+" "+balance);
}

}

class Account
{

public static void main(String args[])
{

Bank b=new Bank("ram",5678.23);
b.show();

}
}

Centre for Distance Education 22 Acharya Nagarjuna University

OUTUT:

LAB EXERCISE 9:

Write a program to implement the concept of threading by implementing
Runnable Interface

PROGRAM DESCRIPTION:

This Java program demonstrates the use of multithreading by creating a child thread
alongside the main thread. The NewThread class implements the Runnable interface and
defines a run() method, where it counts down from 5 to 1, pausing for 500 milliseconds
between each iteration. The main() method in the ThreadDemo class creates an instance of
NewThread, starting the child thread, and then the main thread independently counts down
from 5 to 1, pausing for 1 second between each iteration. Both threads print messages to the
console to indicate their progress. The program also handles interruptions, and at the end,
both threads print a message before exiting. The Thread.sleep() method is used to simulate
delays in the execution of both threads.

SOURCE CODE:

import java.lang.*;
import java.io.*;

class NewThread implements Runnable
{

Thread t; NewThread()
{

t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);

Computer Science 23 Java Programming Lab

t.start();
}

public void run()
{

try
 {

for(int i = 5; i > 0; i--)
{

 System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
}
catch (InterruptedException e)
{

System.out.println("Child interrupted.");
}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo
{

public static void main(String args[])
{

new NewThread();
try
{

for (int i = 5; i > 0; i--)
{

System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
}
catch(InterruptedException e)
{

System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

Centre for Distance Education 24 Acharya Nagarjuna University

OUTPUT:

LAB EXERCISE 10:

Write a java program to store and read objects from a file

PROGRAM DESCRIPTION:

The provided Java program demonstrates file handling by reading the contents of one file and
writing it to another. It uses FileInputStream to open and read data from a file named
"technology.txt" and FileOutputStream to write the read data into a new file called
"system.txt." Inside the while loop, the program reads each byte from the input file, prints the
corresponding character to the console, and writes the byte to the output file. The program
continues this process until all bytes have been read (when fis.read() returns -1). Finally, the
program closes both the input and output file streams to release system resources. This
program handles potential file input/output exceptions using the throws Exception
declaration.

SOURCE CODE:

import static java.lang.System.*;
import java.io.*;

class ReadDemo
{
 public static void main(String args[])throws Exception
 {
 FileInputStream fis=new FileInputStream("technology.txt");
 FileOutputStream fos=new FileOutputStream("system.txt");
 int r=0;
 while((r=fis.read())!=-1)
 {
 out.print((char)r);
 fos.write(r);
 }

Computer Science 25 Java Programming Lab

 fis.close();
 fos.close();
 }
}

OUTPUT:

LAB EXERCISE 11:

Write a Java program that displays the number of characters, lines and
words in a text file.

PROGRAM DESCRIPTION:

This Java program calculates and displays the number of characters, lines, and words in a
specified text file. It uses BufferedReader and FileReader to read the file line by line. For
each line, the program increments the line count, splits the line into words (using regular
expression \\s+ to handle spaces), and counts the words by measuring the length of the
resulting array. It also counts the characters by determining the length of each line. After
processing all lines, the program prints the total number of characters, lines, and words. If
there is an error while reading the file, the program catches the IOException and displays an
error message. The file path can be changed by modifying the filePath variable.

SOURCE CODE:

import java.io.*;

class FileStatistics
{

public static void main(String[] args)
 {
 String filePath = "sample.txt";

// Change to the path of your text file. Initialize counters for characters, lines, and words

Centre for Distance Education 26 Acharya Nagarjuna University

 int characterCount = 0;
 int lineCount = 0;
 int wordCount = 0;

 try (BufferedReader br = new BufferedReader(new FileReader(filePath)))
 {
 String line; //Read each line from the file

 while ((line = br.readLine()) != null)
 {

 lineCount++; // Count lines
 String[] words = line.split("\\s+"); // Count words in the current line
 wordCount += words.length;

 characterCount += line.length();// Count characters in the current line

 }
 // Display the results

 System.out.println("\n Number of characters: " + characterCount);
 System.out.println("\n Number of lines: " + lineCount);
 System.out.println("\n Number of words: " + wordCount);
 }

catch (IOException e)
{
 System.out.println("An error occurred while reading the file.");
 e.printStackTrace();

 }
 }
}

OUTPUT

Computer Science 27 Java Programming Lab

LAB EXERCISE 12:

Write a java program to illustrate object serialization

PROGRAM DESCRIPTION:

This Java program demonstrates object serialization and deserialization using the Voter class.
The Voter class, which implements the Serializable interface, contains two fields: name and
age, along with a constructor to initialize these fields and a display() method to print the
object’s details. The program creates an instance of the Voter class, serializes it into a file
named Voter.ser using ObjectOutputStream, and prints a confirmation message. Then, it
deserializes the object from the file using ObjectInputStream, and the deserialized object's
details are displayed. The program also includes exception handling to catch errors during
both serialization and deserialization. This example highlights the process of converting an
object into a byte stream and restoring it back to its original form in Java.

SOURCE CODE:

import java.io.*;

// Class to represent a simple object that can be serialized

class Voter implements Serializable
{

private String name;
private int age;

 // Constructor to initialize the object

 public Voter(String name, int age)
{

 this.name = name;
this.age = age;

 }

 // Method to display the object's information

 public void display()
{

 System.out.println("Name: " + name + ", Age: " + age);
}

}

class SerializationExample
{

public static void main(String[] args)
{

 // Create an object of Voter class

 Voter Voter1 = new Voter("Lakshmi Shourya", 30);
 // Serialize the object to a file

Centre for Distance Education 28 Acharya Nagarjuna University

 try (ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream("Voter.ser")))
{

 out.writeObject(Voter1); // Serialize the object

 System.out.println("Object has been serialized.");
 }

catch (IOException e)
{
 System.out.println("Error during serialization: " + e.getMessage());

 }

 // Deserialize the object from the file

try (ObjectInputStream in = new ObjectInputStream(new
FileInputStream("Voter.ser")))

{
 Voter deserializedVoter = (Voter) in.readObject(); // Deserialize the

object
 System.out.println("Object has been deserialized.");

 deserializedVoter.display(); // Display the deserialized object's data

}
catch (IOException | ClassNotFoundException e)
{
 System.out.println("Error during deserialization: " + e.getMessage());
}

 }
}

OUTPUT:

Computer Science 29 Java Programming Lab

LAB EXERCISE 13:

Create a java program to illustrate user defined exception

PROGRAM DESCRIPTION:

This Java program demonstrates the use of a user-defined exception by simulating a bank
account system. It defines a custom exception, InsufficientFundsException, which is thrown
when a user attempts to withdraw more money than their account balance. The BankAccount
class includes a withdraw method that checks if the withdrawal amount exceeds the available
balance, throwing the custom exception if insufficient funds are detected. In the main
method, the program first tries to withdraw an amount larger than the balance, catches the
exception, and then successfully processes a valid withdrawal. The program helps illustrate
how custom exceptions can enhance error handling in real-world scenarios, like financial
transactions.

SOURCE CODE:

import java.io.*;
// Define the user-defined exception

class InsufficientFundsException extends Exception
{
 // Constructor to accept a custom error message

public InsufficientFundsException(String message)
{
 super(message);
}

}

// BankAccount class that performs withdrawal operations

class BankAccount
{

private double balance; // Constructor to initialize balance
public BankAccount(double initialBalance)
{
 this.balance = initialBalance;
 }

 // Method to withdraw money

public void withdraw(double amount) throws InsufficientFundsException
{

if (amount > balance)
{

 // Throwing user-defined exception if withdrawal amount is greater than the balance

throw new InsufficientFundsException("Insufficient funds! You are trying to
withdraw " + amount + " but your balance is only " + balance);
}

Centre for Distance Education 30 Acharya Nagarjuna University

 balance -= amount; // Deduct the amount from the balance

System.out.println("Withdrawal successful! Your new balance is: " +
balance);

 }

 // Method to check balance

 public double getBalance()
{
 return balance;
 }

}

 class UserDefinedExceptionExample
{

public static void main(String[] args)
{
 // Create a BankAccount with an initial balance of 1000

BankAccount account = new BankAccount(1000.00);
 // Try to withdraw an amount greater than the balance

 try
{

 System.out.println("Attempting to withdraw $1500...");
 account.withdraw(1500.00); // This should throw the exception

}
catch (InsufficientFundsException e)
{

 // Handle the exception
 System.out.println("Exception caught: " + e.getMessage());
}

 // Try a successful withdrawal

 try
{
 System.out.println("Attempting to withdraw $500...");

 account.withdraw(500.00); // This should succeed

 }
catch (InsufficientFundsException e)
{
 // Handle the exception

 System.out.println("Exception caught: " + e.getMessage());
 }

 // Display remaining balance
 System.out.println("Remaining balance: " + account.getBalance());
 }
}

Computer Science 31 Java Programming Lab

OUTPUT:

LAB EXERCISE 14:

Write a Java Program to create a thread using runnable interface

PROGRAM DESCRIPTION

The above Java program demonstrates the use of a user-defined exception by simulating a
bank account system. It defines a custom exception, ‘InsufficientFundsException’, which is
thrown when a user attempts to withdraw more money than their account balance. The
‘BankAccount’ class includes a ‘withdraw’ method that checks if the withdrawal amount
exceeds the available balance, throwing the custom exception if insufficient funds are
detected. In the ‘main’ method, the program first tries to withdraw an amount larger than the
balance, catches the exception, and then successfully processes a valid withdrawal. The
program helps illustrate how custom exceptions can enhance error handling in real-world
scenarios, like financial transactions.

SOURCE CODE:

import java.lang.*;
import java.lang.*;
import java.io.*;

class Tdemo implements Runnable
{

boolean stop=false; Tdemo()
{

Thread t=new Thread(this); t.start();
}

public void run()
{

for(;;)

Centre for Distance Education 32 Acharya Nagarjuna University

{

if(stop)
break;

System.out.println("Tdemo");
}

}

public static void main(String[] args) throws Exception
{

Tdemo d=new Tdemo();
System.in.read();
d.stop=true;

}
}
OUTPUT:

LAB EXERCISE 15:

Write a Java program that creates three threads. First thread displays
“Good Morning” every one second, the second thread displays “Hello”
every two seconds and the third thread displays “Welcome” every three
seconds

PROGRAM DESCRIPTION

The given Java program demonstrates the use of multiple threads running concurrently. It
defines three classes ('A', 'B', and 'C'), each extending the 'Thread' class and overriding the
'run()' method. Each thread has its own synchronized 'run()' method that continuously prints
messages at different time intervals: "good morning" every 10 milliseconds, "hello" every 20
milliseconds, and "welcome" every 30 milliseconds. The 'ThreadDemo' class creates and

Computer Science 33 Java Programming Lab

starts three threads ('t1', 't2', and 't3'), each corresponding to one of the classes. The use of the
'synchronized' keyword ensures that the messages are printed in a thread-safe manner,
although there are no specific shared resources being accessed. This program illustrates basic
multithreading concepts in Java and how threads can work concurrently with different sleep
durations.

SOURCE CODE:

import java.lang.*;
import java.io.*;

class A extends Thread
{

synchronized public void run()
{

try
{

 while(true)
{

 sleep(10);
System.out.println("good morning");

}
}
catch(Exception e)
{

 }
}

}

class B extends Thread
{

synchronized public void run()
{

try
{

while(true)
{

sleep(20);
System.out.println("hello");

}
}
catch(Exception e)
{
}

}

Centre for Distance Education 34 Acharya Nagarjuna University

}
class C extends Thread
{

synchronized public void run()
{

try
{

while(true)
{

sleep(30);
System.out.println("welcome");

}
}
catch(Exception e)
{
}

}

}

class ThreadDemo
{

public static void main(String args[])
{
A t1=new A();
B t2=new B();
C t3=new C();
t1.start();
t2.start();
t3.start();
}

}

OUTPUT:

Computer Science 35 Java Programming Lab

LAB EXERCISE 16:

Write a java program to create multiple threads that correctly implements
producer consumer problem using the concept of Inter thread
communication

PROGRAM DESCRIPTION

This Java program demonstrates a basic producer-consumer problem using multithreading and
synchronization. It involves two threads, ‘Producer’ and ‘Consumer’, which communicate with each
other by sharing a resource. The ‘Producer’ thread generates values (from 1 to 10) and assigns them to
a variable ‘j’ in the ‘Consumer’ class. The producer uses ‘synchronized’ blocks to ensure that the
‘Consumer’ thread consumes the produced value in a controlled manner. After producing a value, the
producer calls ‘wait()’ to release the lock and allow the consumer to consume the value. The
‘Consumer’ thread, in turn, consumes the value, prints it, and notifies the producer using ‘notify()’ to
signal that the producer can continue. This cycle repeats until both threads have processed 10 values.
The program uses ‘Thread.sleep()’ to simulate delays and control the timing of production and
consumption. The synchronization ensures that the producer and consumer work in a coordinated
manner without conflicts.

SOURCE CODE:

import java.lang.*;

class Producer extends Thread
{

static int i=0;
Consumer obj;
Producer(Consumer obj1)
{

obj=obj1;
}

public void run()
{

System.out.println("producer thread started");
synchronized(obj)
{

while(i<10)
{

try
{

System.out.println("Value produced is:"+(i+1));
obj.j=++i;
Thread.sleep(10);
wait();
System.out.println("lock is released by producer"); i++;

Centre for Distance Education 36 Acharya Nagarjuna University

}
catch(Exception e)
{
}

}
class Consumer extends Thread
{

int j;
public void run()
{

System.out.println("consumer thread has been started");
synchronized(this)
{

while(j<10)
{
try
{

System.out.println("value of j before exception"+j);
Thread.sleep(10);
System.out.println("consumed:"+j);
j++;

notify();
 }
catch(Exception e)
{
}

}
}

}
}

class CommDemo
{

public static void main(String[] args)throws Exception
{

Consumer con=new Consumer();
Producer pod=new Producer(con);
con.start();
Thread.sleep(5);
pod.start();

}
}

Computer Science 37 Java Programming Lab

OUTPUT:

LAB EXERCISE 17:

Write an applet to handling the mouse events

PROGRAM DESCRIPTION

The Java program demonstrates the use of mouse event handling in an applet using
MouseListener and MouseMotionListener interfaces. It creates a graphical interface where
various mouse actions trigger different events. The MouseDemo applet reacts to mouse
events like entering, exiting, clicking, pressing, and releasing. Depending on the action, it
changes the background color of the applet and updates a message (msg). For example, when
the mouse is pressed, the background changes to green, and the message is updated to "Java."
The program also captures mouse movement and drag events, updating the message and
background color accordingly. The paint() method is used to display the updated message at
specific coordinates on the applet's canvas. This interactive applet showcases how Java
handles mouse inputs and provides feedback through visual and textual updates.

SOURCE CODE:

import java.awt.*;
import java.awt.event.*;
 import java.applet.*;
/*
<applet code="MouseDemo" width=500 height=500> </applet>

Centre for Distance Education 38 Acharya Nagarjuna University

*/

class MouseDemo extends Applet implements MouseListener,MouseMotionListener
{

int X=0,Y=20;

String msg="MouseEvents"; public void init()
{

addMouseListener(this);
addMouseMotionListener(this);
setBackground(Color.black);
setForeground(Color.red);

}

public void mouseEntered(MouseEvent m)
{

setBackground(Color.magenta); showStatus("Mouse Entered"); repaint();
}

public void mouseExited(MouseEvent m)
{

setBackground(Color.black); showStatus("Mouse Exited"); repaint();
}

public void mousePressed(MouseEvent m)
{

X=10;
Y=20;
msg="Java";
setBackground(Color.green);
repaint();

}

public void mouseReleased(MouseEvent m)
{

X=10;
Y=20;
msg="Programming";
setBackground(Color.blue);
repaint();

}

public void mouseMoved(MouseEvent m)
{

X=m.getX();

Computer Science 39 Java Programming Lab

Y=m.getY();
msg="MCA";
setBackground(Color.white);
showStatus("Mouse Moved");
repaint();

}

public void mouseDragged(MouseEvent m)
{

msg="ANU";
setBackground(Color.yellow);
showStatus("Mouse Moved"+m.getX()+" "+m.getY()); repaint();

}

public void mouseClicked(MouseEvent m)
{

msg="Surya Kameswari";
setBackground(Color.pink);
showStatus("Mouse Clicked");
repaint();

}
public void paint(Graphics g)
{

g.drawString(msg,X,Y);
}

}

OUTPUT:

Centre for Distance Education 40 Acharya Nagarjuna University

LAB EXERCISE 18:

Write a Program That works as a simple calculator using Grid layout to
arrange buttons for the digits and +,-,* % operations. Add a text field to
print the result.

PROGRAM DESCRIPTION

The given Java program implements a simple calculator applet using the AWT (Abstract
Window Toolkit) library to handle basic arithmetic operations like addition, subtraction,
multiplication, division, and modulus. The applet provides a user interface with buttons for
digits (0-9), operations (+, -, *, /, %, =), and a clear button ("C"). It uses a TextField for
displaying input and results. The actionPerformed() method processes the actions triggered
by the user, such as digit entries and operations, and calculates the result based on the
operator selected. The result is displayed after pressing the "=" button. The calculator uses a
GridLayout to organize the buttons in a 4x5 grid and handles user inputs with event listeners
that perform the appropriate calculations based on the operator selected. The program also
provides functionality for clearing the input field with the "C" button.

SOURCE CODE:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

/* <applet code="Calculator" width=300 height=300> </applet> */

public class Calculator extends Applet implements ActionListener
{

String msg=" "; int v1,v2,result; TextField t1;
Button b[]=new Button[10];
Button add,sub,mul,div,clear,mod,EQ; char OP;

public void init()
{

Color k=new Color(120,89,90); setBackground(k);
t1=new TextField(10);
GridLayout gl=new GridLayout(4,5); setLayout(gl);
for(int i=0;i<10;i++)
{

b[i]=new Button(""+i);
}

add=new Button("+");
sub=new Button("-");

Computer Science 41 Java Programming Lab

mul=new Button("*");
div=new Button("/");
mod=new Button("%");
clear=new Button("C");
EQ=new Button("=");
t1.addActionListener(this);
add(t1);

for(int i=0;i<10;i++)
{

add(b[i]);
}

add(add);
add(sub);
add(mul);
add(div);
add(mod);
add(clear);
add(EQ);

for(int i=0;i<10;i++)
{

b[i].addActionListener(this);
}
add.addActionListener(this);
sub.addActionListener(this);
mul.addActionListener(this);
div.addActionListener(this);
mod.addActionListener(this);
clear.addActionListener(this);
EQ.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)
{

String str=ae.getActionCommand();
char ch=str.charAt(0);
if (Character.isDigit(ch))

t1.setText(t1.getText()+str);
else

if(str.equals("+"))
{

v1=Integer.parseInt(t1.getText());
OP='+';

Centre for Distance Education 42 Acharya Nagarjuna University

t1.setText("");

}
else if(str.equals("-"))
{

v1=Integer.parseInt(t1.getText()); OP='-';
t1.setText("");

}
else if(str.equals("*"))
{

v1=Integer.parseInt(t1.getText());
OP='*';
t1.setText("");

}
else if(str.equals("/"))
{

v1=Integer.parseInt(t1.getText());
OP='/';
t1.setText("");

}
else if(str.equals("%"))
{

v1=Integer.parseInt(t1.getText());
OP='%';
t1.setText("");

}
if(str.equals("="))
{

v2=Integer.parseInt(t1.getText());
if(OP=='+')
result=v1+v2; else if(OP=='-')
result=v1-v2; else if(OP=='*')
result=v1*v2; else if(OP=='/')
result=v1/v2; else if(OP=='%')
result=v1%v2;
t1.setText(""+result);

}

if(str.equals("C"))
{

t1.setText("");
}

}
}

OUTPUT:

Computer Science 43 Java Programming Lab

LAB EXERCISE 19:

Build and run Celsius converter sample application using swings

PROGRAM DESCRIPTION

The Java program implements a simple Celsius to Fahrenheit temperature converter using the
Swing GUI framework. It creates a graphical user interface (GUI) with a ‘JFrame’ containing
a ‘JPanel’ and components arranged in a ‘GridLayout’. The user inputs a temperature in
Celsius into a ‘JTextField’, and upon pressing the "Convert..." button, the program converts
the Celsius value to Fahrenheit and displays the result in a ‘JLabel’. The conversion formula
used is ‘Fahrenheit = (Celsius * 1.8) + 32’. The program implements the ‘ActionListener’
interface to handle the button click event, triggering the conversion process. The look and
feel of the application is set to the cross-platform default using ‘UIManager’. This program
demonstrates basic event handling and GUI design in Java using Swing components.

SOURCE CODE:

import java.awt.BorderLayout;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.SwingConstants;
import javax.swing.UIManager;

Centre for Distance Education 44 Acharya Nagarjuna University

public class CelsiusConverter implements ActionListener
{

JFrame converterFrame;
JPanel converterPanel;
JTextField tempCelsius;
JLabel celsiusLabel, fahrenheitLabel;
JButton convertTemp;

public CelsiusConverter()
{

converterFrame = new JFrame("Convert Celsius to Fahrenheit");
converterPanel = new JPanel();
converterPanel.setLayout(new GridLayout(2, 2));
addWidgets();
converterFrame.getContentPane().add(converterPanel,
BorderLayout.CENTER);
converterFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
converterFrame.pack();
converterFrame.setVisible(true);

}

 // Create and add the widgets for converter.

private void addWidgets()
{

tempCelsius = new JTextField(2);
celsiusLabel = new JLabel("Celsius", SwingConstants.LEFT); convertTemp =
new JButton("Convert...");
fahrenheitLabel = new JLabel("Fahrenheit", SwingConstants.LEFT);
convertTemp.addActionListener(this);
converterPanel.add(tempCelsius);
converterPanel.add(celsiusLabel);
converterPanel.add(convertTemp);
converterPanel.add(fahrenheitLabel);
celsiusLabel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
fahrenheitLabel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));

}

// Implementation of ActionListener interface.

public void actionPerformed(ActionEvent event)
{

int tempFahr = (int) ((Double.parseDouble(tempCelsius.getText())) * 1.8 +
32); fahrenheitLabel.setText(tempFahr + " Fahrenheit");

}

public static void main(String[] args)

Computer Science 45 Java Programming Lab

{
 // Set the look and feel.

 try
 {

 UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
 }
 catch (Exception e)
 {
 }
 CelsiusConverter converter = new CelsiusConverter();
}

}

OUTPUT:

LAB EXERCISE 20:

Develop an applet that receives an integer in one text field, and computes
its factorial Value and returns it in another text field, when the button
named “Compute” is clicked

PROGRAM DESCRIPTION

The given Java program implements a simple applet to compute the factorial of a number

entered by the user. It uses the AWT (Abstract Window Toolkit) for creating the graphical

user interface (GUI). The applet contains a ‘TextField’ for the user to input a number (‘n’), a

‘Button’ labeled "compute" to trigger the calculation, and another ‘TextField’ to display the

calculated factorial. When the user enters a number and clicks the "compute" button, the

‘actionPerformed()’ method is invoked, which calculates the factorial by multiplying all

Centre for Distance Education 46 Acharya Nagarjuna University

integers from 1 to ‘n’ and displays the result in the second ‘TextField’. The program

demonstrates event handling in Java applets, allowing interaction with GUI elements to

perform a mathematical calculation.

SOURCE CODE:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*<applet code="fact.class" width=300 height=300></applet>*/

public class fact extends Applet implements ActionListener

{

int n;

TextField t1, t2;

Label l1;

Button b;

public void init()

{

l1=new Label("enter n value",Label.LEFT); t1=new TextField(20);

b=new Button("compute"); t2=new TextField(20); add(l1);

add(t1);

add(b);

add(t2);

b.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

String s1=t1.getText(); int f=1;

int n=Integer.parseInt(s1); for(int i=1;i<=n;i++)

f=f*i;

String s="fact="+f; t2.setText(s);

}

}

OUTPUT:

Computer Science 47 Java Programming Lab

